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An analytical expression for the characteristic length scale (L) of the pair

correlation functions for randomly faulted hexagonal close-packed structures is

derived for the case when the roots of the characteristic equation are all real.

The values of L obtained by this analytical treatment are in good agreement

with those obtained numerically.

Stacking faults are commonly observed in hexagonal and cubic close-

packed metals and alloys. They are also observed in several polytypic

materials like SiC, ZnS, CdI2, PbI2 etc. where the positions of one type

of atom correspond to the close-packed sphere packing while the

other atoms occupy the void sites (Pandey & Krishna, 1992). These

stacking faults give rise to characteristic diffuse streaks on diffraction

patterns along the [001]* direction for those HK.L reciprocal-lattice

rows for which H � K 6¼ 0mod 3 (Wilson, 1962). The effect of

stacking faults on diffraction patterns can be modelled through

various analytical (Wilson, 1962; Warren, 1969; Pandey & Krishna,

1992) and Monte Carlo methods (Berliner & Werner, 1986; Kabra &

Pandey, 1995, 1996; Shreshtha et al., 1996). In all these approaches for

calculating diffraction effects due to stacking faults, the pair corre-

lation functions are first obtained, whose Fourier transforms give the

diffracted intensity. Through the use of kinetic Ising models for

modelling restacking transitions between close-packed structures,

Shreshtha & Pandey (1996, 1997) and Shreshtha et al. (1996) showed

that the pair correlation functions P(m), Q(m) and R(m) (which

describe the probabilities of occurrence of A–A, B–B, C–C; A–B,

B–C, C–A; and A–C, B–A, C–B pairs of layers separated by m layers)

for faulted close-packed structures can be described by exponentially

varying functions like expð�m=LÞ, where L is a characteristic length

scale. By scaling the interlayer separation with respect to this char-

acteristic length scale, the various pair correlation functions in the

time domain were shown to collapse into master curves (Shreshtha et

al., 1996). Recently, we demonstrated that the scaling behaviour holds

true in the fault probability domain as well (Tiwary & Pandey, 2007),

where this was shown for random distributions of growth and

deformation faults and their mixtures in hexagonal close-packed

(h.c.p.) crystals. The characteristic length scales were obtained

through Monte Carlo simulations as well as through numerical and

analytical procedures by considering the characteristic equation for

random faults in h.c.p. crystals (Pandey & Krishna, 1977). It is known

that the roots of the characteristic equation can be real or complex

depending on the values of the fault probabilities (Pandey & Krishna,

1977). We obtained analytical solutions for the case where the roots

are complex but we were unable to do so for the case when the roots

were real, for which we had to resort to numerical procedures

(Tiwary & Pandey, 2007). In this communication, we demonstrate

that it is possible to obtain an analytical solution for this case (real

roots) as well, and calculate the dependence of characteristic length

scale on fault probabilities through this analytical route.

The characteristic equation for h.c.p. crystals with random growth

fault probability � and random deformation fault probability � is

given as (Pandey & Krishna, 1977)
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The pair correlation function P(m) will thus be (Pandey & Krishna,

1977)
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Let us consider the specific case of pure random growth faulting

first, with � < 0.536, which was considered analytically intractable by

Tiwary & Pandey (2007). In this region, the pair correlations are

known to be purely h.c.p. type, and thus we focus only on the even

values of m, which yield purely decaying type pair correlation func-

tions. For even m, it can easily be shown that
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For 0 < � < 0.536, we have
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Thus, the first term inside the braces in equation (9) is negligible

compared to the second term, and hence
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Using the following exponential functions to describe the depen-

dence of P(m) on m (Shreshtha & Pandey, 1996),

PðmÞ ¼ 1=3þ ð2=3Þ expð�m=LÞ; for m even, ð13Þ

and

PðmÞ ¼ 1=3� ð1=3Þ expð�m=LÞ; for m odd, ð14Þ

and, by comparing equation (13) with equation (12), we obtain the

desired analytical expression for the characteristic length scale:

L ¼
�1

log½ð�þ xÞ=2�
: ð15Þ

The functional dependence of L on � as obtained through equation

(13) for the case of pure random growth faulting with � < 0.536 is

shown in Fig. 1. Fig. 1 also shows the dependence of L on � for � <

0.536 as obtained by Tiwary & Pandey (2007) through exact nu-

merical calculations. It is evident from this figure that the two curves

are in excellent agreement up to about � = 0.45. The small departure

for � > 0.45 shows that the approximation given by equation (10) is

not adequate. Although we have considered the case of pure growth

faults in this communication, our results are valid for the entire

region A of Fig. 1 of Tiwary & Pandey (2007) even when there are

coexisting deformation faults as well. Fig. 2 compares the cases of

mixed fault probabilities with � = 0.2 and 0.3. Once again, the

analytical results are in excellent agreement with the numerically

computed values for � < 0.4.
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Figure 1
Variation of expð�1=LÞ with the growth fault probability � for pure random growth
faulting with 0 < � < 0.536.

Figure 2
Variation of expð�1=LÞ with the growth fault probability � for mixed faulting, with
deformation fault probability � = 0.2 and � = 0.3.


